Hölder continuity of Oseledets splittings for semi-invertible operator cocycles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hölder continuity of Oseledets splittings for semi-invertible operator cocycles

For Hölder continuous cocycles over an invertible, Lipschitz base, we establish the Hölder continuity of Oseledets subspaces on compact sets of arbitrarily large measure. This extends a result of Araújo et al [On Hölder-continuity of Oseledets subspaces J. Lond. Math. Soc. 93 (2016) 194–218] by considering possibly non-invertible cocycles, which, in addition, may take values in the space of com...

متن کامل

Stochastic Stability of Lyapunov Exponents and Oseledets Splittings for Semi-invertible Matrix Cocycles

We establish (i) stability of Lyapunov exponents and (ii) convergence in probability of Oseledets spaces for semi-invertible matrix cocycles, subjected to small random perturbations. The first part extends results of Ledrappier and Young [18] to the semiinvertible setting. The second part relies on the study of evolution of subspaces in the Grassmannian, where the analysis developed, based on h...

متن کامل

A semi-invertible operator Oseledets theorem

Semi-invertible multiplicative ergodic theorems establish the existence of an Oseledets splitting for cocycles of non-invertible linear operators (such as transfer operators) over an invertible base. Using a constructive approach, we establish a semi-invertible multiplicative ergodic theorem that for the first time can be applied to the study of transfer operators associated to the composition ...

متن کامل

A Semi-invertible Oseledets Theorem with Applications to Transfer Operator Cocycles

Oseledets’ celebrated Multiplicative Ergodic Theorem (MET) [V.I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210.] is concerned with the exponential growth rates of vectors under the action of a linear cocycle on Rd. When the linear actions are invertible, the MET guarantees an almost-everywhere poi...

متن کامل

On Hölder-continuity of Oseledets subspaces

For Hölder cocycles over a Lipschitz base transformation, possibly noninvertible, we show that the subbundles given by the Oseledets Theorem are Höldercontinuous on compact sets of measure arbitrarily close to 1. The results extend to vector bundle automorphisms, as well as to the Kontsevich-Zorich cocycle over the Teichmüller flow on the moduli space of abelian differentials. Following a recen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2016

ISSN: 0143-3857,1469-4417

DOI: 10.1017/etds.2016.55